Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:
Teste de hipóteses, teste estatístico ou teste de significância é um procedimento estatístico que permite tomar uma decisão (aceitar ou rejeitar a hipótese nula ) entre duas ou mais hipóteses (hipótese nula ou hipótese alternativa ), utilizando os dados observados de um determinado experimento. Há diversos métodos para realizar o teste de hipóteses, dos quais se destacam o método de Fisher (teste de significância), o método de Neyman–Pearson e o método de Bayes.
Por meio da teoria da probabilidade, é possível inferir sobre quantidades de interesse de uma população a partir de uma amostra observada de um experimento científico. Por exemplo, estimar pontualmente e de forma intervalar um parâmetro de interesse, testar se uma determinada teoria científica deve ser descartada, verificar se um lote de remédios deve ser devolvido por falta de qualidade, entre outros. Por meio do rigor matemático, a inferência estatística pode ser utilizada para auxiliar a tomada de decisões nas mais variadas áreas.
Os testes de hipóteses são utilizados para determinar quais resultados de um estudo científico podem levar à rejeição da hipótese nula a um nível de significância pré–estabelecido. O estudo da teoria das probabilidades e a determinação da estatística de teste correta são fundamentais para a coerência de um teste de hipótese. Se as hipóteses do teste de hipóteses não forem assumidas de maneira correta, o resultado será incorreto e a informação será incoerente com a questão do estudo científico. Os tipos conceituais de erro (erro do tipo I e erro do tipo II) e os limites paramétricos ajudam a distinguir entre a hipótese nula e a hipótese alternativa .
São fundamentais os seguintes conceitos para um teste de hipóteses: